UNDER SECRETARY OF THE AIR FORCE
WASHINGTON

SEP 20 2004

04A-003
MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: Revitalizing the Software Aspects of Systems Engineering

REFERENCE: Air Force Software-Intensive Systems Strategic Improvement Program
(AFSSIP) memo dated 13 Jan 2004.

In multiple programs across our acquisition communities, we have recognized systems
engineering challenges over the past few years, and have taken steps to improve the
implementation and effectiveness of our systems engineering processes.

This policy memorandum is intended to improve the efficiency and effectiveness of our
acquisition processes and software management. These processes are applied as an integral part
of our systems engineering and capability acquisition processes. To support our overall agile
acquisition objectives, we expect you to address, as a minimum, the following software focus
areas throughout the life cycle of your acquisition programs beginning with pre-Milestone/Key
Decision Point A activities:

1. High Confidence Estimates: Estimate the software development and integration
effort (staff hours), cost, and schedule at high (80-90%) confidence.

2. Realistic Program Baselines: Ensure cost, schedule, and performance baselines are
realistic and compatible. Ensure the baselines support the disciplined application of
mature systems/software engineering processes, and ensure software-related
expectations are managed in accordance with the overall program’s expectation
management agreement. The program budget must support the high confidence
estimates for effort (staff hours), cost, and schedule.

3. Risk Management: Continuously identify and manage risks specific to computer
systems and software as an integral part of the program risk management process.
Ensure the risks, impact, and mitigation plans are appropriately addressed during
program and portfolio reviews.

4. Capable Developer: Identify the software-related strengths, weaknesses, and risks;
domain experience; process capability; development capacity; and past performance
for all developer team members with significant software development
responsibilities. Consider this information when establishing program baselines and
awarding contracts, and throughout program execution.

5. Developer Processes: Ensure the entire developer team establishes, effectively
manages, and commits to consistent application of effective software development
processes across the program.



6. Program Office Processes: Ensure the program office establishes and employs
effective acquisition processes for software, is adequately staffed, and consistently
supports the developer team in the disciplined application of established development
processes.

7. Earned Value Management Applied to Software: Continuously collect and
analyze earned value management data at the software level to provide objective
measures of software cost and schedule. The Earned Value Management System
should support and be consistent with the software effort and schedule metrics.

8. Metrics: Employ a core set of basic software metrics to manage the software
development for all developer team members with significant software
development/integration responsibilities. Guidance for the core metrics is provided in
the enclosure. Programs are encouraged to implement additional metrics based on
program needs.

9. Life Cycle Support: Address sustainment capability and capacity needs during the
system design and development phase, and balance overall system acquisition and
sustainment costs. Ensure you plan, develop, and maintain responsive life cycle
software support capabilities and viable support options.

10. Lessons Learned: Support the transfer of lessons learned to future programs by
providing feedback to center level Acquisition Center of Excellence (ACE) and other
affected organizations. Lessons learned information includes original estimates and
delivered actuals for software size, effort, and schedule; program risks and mitigation
approaches; and objective descriptions of factors such as added functional
requirements, schedule perturbations, or other program events that contributed to
successes and challenges.

These focus areas will be incorporated as appropriate in your Systems Engineering Plan,
Integrated Program Summary, or acquisition plans. We also expect you to address these focus
areas as applicable during Acquisition Strategy Panels and PEO portfolio reviews. PEOs may
tailor the implementation of these focus areas as required and the appropriate Acquisition
Executive will be notified of all tailoring.

Sample language and additional guidance will be available in November 2004 in an Air
Force Software Guidebook. Our POCs are Mr. Ernesto Gonzalez, SAF/AQRE, 703-588-7846,
Ernesto.Gonzalez @ pentagon.af.mil, and Maj Mark Davis, SAF/USAL, 703-588-7385,
Mark.Davis2 @pentagon.af.mil.

M\ VT

MARVIN R. SAMBUR PETER B. TEETS

Assistant Secretary of the Air Force Undersecretary of the Air Force
(Acquisition)

Attachment:

Guidance for Core Software Management Metrics



REVITALIZING THE SOFTWARE ASPECTS OF SYSTEMS ENGINEERING

DISTRIBUTION LIST

AFPEO/IAC
AFPEO/C2&CS
AFPEO/WP
AFPEO/F/A-22
AFPEO/CM
AFPEO/SP
SAF/AQX
SAF/AQC
SAF/AQI
SAF/AQL
SAF/AQP
SAF/AQQ
SAF/USA

CC.

HQ AFMC/CC
HQ AFSPC/CC
AF-CIO
AFPEO/JSF
SAF/ACE
SAF/AQR
SAF/ILC

HQ SSG/ED
HQ MSG/CD
AFOTEC



Enclosure - Guidance for Core Software Management Metrics

Program offices and devel opers should mutually agree on and implement selected software
metrics to provide management visibility into the software development process. The metrics
should clearly portray variances between planned and actual performance, should provide early
detection or prediction of situations that require management attention, and should support the
assessment of the impact of proposed changes on the program. The following core metrics are
required:

- Software Size

- Software Development Effort

- Software Development Schedule

- Software Defects

- Software Requirements Definition and Stability

- Software Development Staffing

- Software Progress (Design, Coding, and Testing)

- Computer Resources Utilization

These indicators should be tailored and implemented consistent with the developer’ s internal
tools and processes. Program offices and developers should agree upon and establish additional
metrics or means of insight to address software issues deemed critical or unique to the program.
All software metrics information should be available to the program office, ideally through on
line, electronic means. Additional information is provided below for each required metric.

Software Size

The size of the software to be developed/integrated is the most critical factor in estimating the
software development effort and schedule. Software size should be estimated and recorded prior
to the start of the program, and tracked until the completion of development by all programs
involving software development or sustainment. Software size should be estimated and tracked
at least to the function or Computer Software Configuration Item (CSCI) level for each spiral,
increment, or block. It should be re-evaluated at major program milestones or whenever
requirements are changed. The actual size should be recorded at the time a capability (spiral,
increment, or block) is delivered. The reasons for changes in software size should also be
captured over the development period.

Software size is typically measured in source lines of code (SLOC). For weapon system
software development, SLOC is likely the most readily available and the best understood
measure. Size should be tracked for new, modified, and reused code. For programs where
relatively small changes are being applied to large existing software products, or for
development efforts that primarily involve the integration of existing software products, some
type of “equivaent lines of code’ or some other measure may be appropriate to identify and
track the volume of effort required. Whatever measure is used must be clearly defined such that
it is easily understandable and can be consistently applied.

Changes in software size may indicate an unrealistic original estimate; instability in
requirements, design, or coding; or lack of understanding of requirements. Any of these
situations can lead to increases in the cost and schedule required to complete the software.
Variations in software size when tracked by spiral, increment, or block, may indicate migration
of capability from earlier to later increments. Software size data collected over time will provide
a historical basis for improved software estimating processes.



Software Devel opment Effort

Software development effort is measured in staff hours or staff months, and directly relates to
software development cost. Estimated software development effort is derived primarily from
software size, but also depends on other factors such as developer team capability, tool
capability, requirements stability, complexity, and required reliability.

When combined with earned value data and other management information, variances in planned
and actual effort expended may indicate potential overruns, lack of adequate staff or the proper
mix of skills, underestimated software size, unstable or misunderstood requirements, failure to
achieve planned reuse, or unplanned rework as aresult of software defects.

Software Development Schedule

Software schedules should be planned to at least the function or CSCI level for each spira,
increment, or block, and should be re-evaluated at major program milestones or whenever
requirements are changed. Planned and actual schedules should be tracked continuoudly from
the start through the completion of development. Software schedules should provide insight into
the start and completion dates as well as progress on detailed activities associated with
requirements, design, coding, integration, testing, and delivery of software products.

Software development schedule durations are measured in months. Like effort, estimated
software development schedules are determined primarily from software size, but a'so depend on
other factors such as developer team capability, tool capability, requirements stability,
complexity, required reliability, and software testing methods and tools.

Late or poor quality deliveries of low level software products are indicators of overall program
schedule risk. Schedules should be examined for excessive parallel activities that are not
realistic when available resources such as staff or integration labs are considered, excessive
overlap of activities where dependencies exist, or inconsistent detail or duration for similar tasks.

Software Defects

Software defects should be tracked by individual software products as part of the system defect
tracking process from the time the products are baselined. Software defects should be tracked at
the function or CSCI level or lower, by spiral, increment, or block.

Defects are measured by tracking problem reports. Problem reports should account for missing
or poorly defined requirements that result in software rework or unplanned effort. Problem
reports may be tracked by category or criticality, including total number of problem reports
written, open, closed, etc. These could be further broken down by additional categories,
including development phase (requirements definition and analysis, design, code, developer test,
and system test) in which the problem was inserted, development phase in which the problem
was discovered, or by severity.

Software defect metrics provide insight into the readiness of the software to proceed to the next
phasg, its fitness for intended use, and the likelihood/level of future rework. Analysis of
software defects may also indicate weaknesses in parts of the development process, or may
identify certain software components that are particularly troublesome and thus contribute
greater program risk.



Software Requirements Definition and Stability

The number of software requirements should be tracked by spiral, increment, or block, over time.
The number of changes to software requirements (additions, deletions, or modifications) should
be tracked in the same manner. The reasons for requirements changes (new capability or
improved understanding derived during development) should also be tracked.

The number of requirements relates to software size and provides an indicator of how the
requirements are maturing and stabilizing. Software requirements changes can be an early
indicator of rework or unplanned additional software development effort.

Software Development Staffing

Software staffing is tracked using two separate measures. The first tracks the status of the
developer's actual staffing level versus the planned staffing profile over time. A separate
measure tracks developer turnover (unplanned losses of development personnel that must be
replaced). Staffing can also be tracked by personnel type, such as management, engineering,
qualification/testing, and quality assurance.

It is common for developers to plan for arapid buildup of developers at the start of a program,
and it is also common for programs to have difficulty ramping up their staff at the planned rate.
Late arrival of staff indicates planned up-front work is not being completed on schedule, and will
likely lead to delays in delivery, reduced functionality, or both. Turnover adversely impacts
productivity through the direct loss of developers, replacement staff learning curve, and the
impact on existing staff to support replacement staff familiarization.

Software Progress (Design, Coding, and Testing)

Software progress is used to track over time, down to the lowest level of software components,

the actual conpletion of development phase activities compared to the program plan. A typical
approach to progress tracking involves measuring the actual number of software components or
units designed, coded, or tested compared to the planned rate of completion.

Failure to complete these lower level development activities according to schedule is an
indication that there will likely be impact to program:level schedules.

Computer Resources Utilization

Computer resources utilization is a measure of the percentage of computing resources consumed
by the planned or actual software operating in aworst case processing load. Engineering
analysisisrequired to define realistic worst case scenarios the system is expected to encounter.
Utilization is measured as a percentage of capacity used for processing, memory, input/output,
and communication links. This measure should be tracked as an estimate in the early phases of
system devel opment, and actuals as the system continues through devel opment/integration.
Monitoring computer resources utilization helps ensure the planned software design and
expected capabilities will fit within the planned computer resources, and that adequate reserve
capacity is available to permit some level of enhancement in the post deployment support phase.
Overloaded computer resources can lead to system instability or other unacceptable performance.





